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We analyze the dynamics of the parallel mutation-selection quasispecies model with a changing environ-
ment. For an environment with the sharp-peak fitness function in which the most fit sequence changes by k spin
flips every period T, we find analytical expressions for the minimum and maximum mutation rates for which
a quasispecies can survive, valid in the limit of large sequence size. We find an asymptotic solution in which
the quasispecies population changes periodically according to the periodic environmental change. In this state
we compute the mutation rate that gives the optimal mean fitness over a period. We find that the optimal
mutation rate per genome, k /T, is independent of genome size, a relationship which is observed across broad
groups of real organisms.
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I. INTRODUCTION

Over the last 40 years, quasispecies models have emerged
as useful tools in the study of molecular evolution �1–12�.
Quasispecies models describe the evolution of a population
of sequences driven by error-prone replication and selection,
where selection is defined by a fitness function on the se-
quence space. The quasispecies refers to an equilibrium dis-
tribution of sequences localized around a sequence of high
fitness.

The quasispecies models have been studied in much de-
tail, and analytical results have been found for equilibrium
mean fitness �3,6,13,14� and equilibrium population distribu-
tions �4,12,15–17�. More recently, interest has turned to the
study of the dynamics of these models �5,18–20� and evolu-
tion on dynamic fitness landscapes �7–10,21�. In a static en-
vironment the mean fitness of a population in equilibrium is
always maximized for zero mutation rate, whereas in dy-
namic environments it is possible that the mean fitness is
maximized by a nonzero optimal mutation rate �8� since
when too low a mutation rate can reduce the population’s
ability to adapt to environmental changes.

The factors influencing the mutation rate of real organ-
isms are an open topic in genetics, and so theoretical study of
the effects of environmental change on optimum mutation
rates is important �22–25�. However, exact results on dy-
namic fitness landscapes have so far been limited by the
difficulties of the analysis, and analytical results have been
found for only the simplest dynamic landscapes. In this pa-
per we use recently developed analytical techniques to obtain
results for more general dynamic fitness landscapes than
have previously been studied.

The paper is organized as follows. In Sec. II we introduce
the parallel mutation-selection �ParaMuSe� quasispecies
model. In Sec. III we describe the dynamic fitness landscapes
to be studied and define the parameters controlling them. In
Sec. IV we analyze the effect of the dynamic environment on
a quasispecies population and find that in the long-time limit
the quasispecies population fluctuates periodically with the
environmental change. We calculate conditions for the sur-
vival of the quasispecies and the optimal mutation rate. Fi-
nally, in Sec. V we give a discussion of the results of Sec. IV.

II. PARALLEL MUTATION-SELECTION MODEL

Two of the most commonly studied quasispecies models
are the Eigen model �1� and the Crow-Kimura or ParaMuSe
model �2�. In this paper we study the ParaMuSe model with
asexual reproduction. For a space of sequences �Si�, where
the ith sequence has a population xi�t� and a fitness f�Si�, the
ParaMuSe model defines the rate of change of population of
each sequence as

dxi

dt
�t� = f�Si�xi�t� + � �

d�i,j�=1
�xj�t� − xi�t�� − xi�t��

k

f�Sk�xk�t� .

�1�

Here, xi is usually interpreted as frequency, fitness f�Si� is the
growth rate that measures the expected number of surviving
offspring by a sequence Si, and � is the mutation rate per
base per unit time. The first sum runs over all sequences Sj,
which differ from Si by a single mutation, and the last sum
runs over the whole sequence space. The last term ensures
that the total population �kxk�t� is time independent. The
equation can be linearized by a transformation �13�,

pi�t� = xi�t�exp�	
0

t

�
k

f�Sk�xk�s�ds
 , �2�

leading to a linear system of equations,

dpi

dt
�t� = f�Si�pi�t� + � �

d�i,j�=1
�pj�t� − pi�t�� . �3�

If the sequence with N number of base pairs is represented
by a chain of N spins, Si= �s1 , . . . ,sN�, then this equation can
be mapped onto a quantum spin chain �13�. The quantum
dynamics are specified by

d

dt
���t�� = − H���t�� , �4�

���t�� = �
k

pk�t��Sk� , �5�
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H = − f��1
z , . . . ,�N

z � − ��
i=1

N

��i
x − 1� . �6�

Here, �i are the Pauli spin operators on the ith spin in the
chain. Starting from this formulation of the ParaMuSe
model, several techniques from statistical physics have been
used to solve the dynamics �5,14,19�. In particular, the dy-
namics in the case of the sharp-peak fitness function in the
large-N limit was solved exactly in Ref. �19�. In this paper
we use the techniques of Ref. �19� to analyze the ParaMuSe
model with a dynamic environment.

III. DYNAMIC ENVIRONMENT

We consider an environment with the sharp-peak fitness
function

f�Si� = JN , for Si = S0

0, else.
� �7�

The sequence S0 is referred to as the most fit sequence.
In previous papers, the dynamic environments studied

have been restricted to three simple cases, all based on the
sharp-peak fitness function: those with a fixed most fit se-
quence with time-dependent J�t� �18,26�, those with a most
fit sequence which oscillates between two distant sequences
�9,21�, and those in which the most fit sequence changes
location by one spin flip at a time �7,8,11�. Only the third
case displays a nonzero optimum mutation rate. In this paper,
we consider an environment in which the most fit sequences
change by an arbitrary number of spin flips k, after each
period of time T. We study the population of the most fit
sequence as a proportion of the total population after many
periods T.

Time-scale comparison

Suppose at time t=0 all the population is situated at a
sequence Si, a Hamming distance k from the most fit se-
quence �the Hamming distance between two sequences is
defined as the number of spin sites at which the two se-
quences differ�. The relaxation period in this case �the time
taken for the most fit sequence population to exceed that of
any other sequence� was calculated in Ref. �19� and found to
be

� =
k

N

ln
eJN

k�

J − �
, �8�

where � is the mutation rate per site.
If T�� then the time scale of the environmental change is

much longer than the time taken for the population to relax
to the most fit sequence, and therefore we expect the most fit
sequence population to remain a significant fraction of the
total population after many environmental changes �the qua-
sispecies survives�. However, if T�� then the environment
change is too rapid for the population to adapt, in which case
we expect no quasispecies to form. We are interested in the
intermediate case T��. Since our method is valid only for

large N, we need T /� to tend to a finite nonzero value as N
→�. We assume that k and T do not scale with N, and so we
choose the scaling

J =
ln N

N
j, � =

ln N

N
� , �9�

where j and � are N independent �note that the ParaMuSe
model �3� is invariant under a transformation J→J /	, �
→� /	, t→	t�. With this choice of scaling it follows from
Eq. �8� that T /� does not scale with N, as required.

IV. ANALYSIS OF THE DYNAMIC ENVIRONMENT

A. Definition of the periodic solution

In any periodically changing environment, the asymptotic
solution to the ParaMuSe model �1� is a population distribu-
tion that changes periodically with the same period as the
environmental change. The existence and uniqueness of such
a solution is guaranteed by the Frobenius-Perron theorem
�see Sec. 3 of Ref. �9��.

In the environment considered here the most fit sequence
changes by k spin flips every period T. We assume that these
k spins are chosen randomly and independently of which
spins were flipped in the previous environmental changes.
Denoting the nth most fit sequence by Sn, the distance from
Sn to Sn−2 can be anywhere from 0 to 2k �less than 2k if the
same spin is flipped twice in successive environmental
changes�. For this reason our environment is not strictly
periodic—the distance from the most fit sequence Sn to
Sn−1 ,Sn−2 , . . . does not need to be the same as the distance
from the most fit sequence Sn+1 to Sn ,Sn−1 , . . .. However, if
k�N then the chance of the same spin being flipped twice is
very small. More precisely, it is shown in Appendix A that,
for m=N1/3, the probability that all of the mk spins flipped in
m environmental changes are distinct tends to 1 as N→�.
Thus, for large enough N we can assume that the distance
from Sn to any Sp with n− p
N1/3 is the same as the distance
from Sn+1 to Sp+1, so that in the large-N limit the environment
is approximately periodic. Hence, we look for a periodic
asymptotic solution to the ParaMuSe model in the large-N
limit.

Let P�t� and pm�t� denote the total population and the
most fit sequence population at time t, respectively. In the
periodic solution we have

pm�t + T�
P�t + T�

=
pm�t�
P�t�

. �10�

Note that the solution is periodic in terms of the normalized
populations xi�t� of Eq. �1�, not the populations pi�t� of Eq.
�3�.

For the sharp-peak fitness function, summing Eq. �3� over
all sequences Si and integrating over time, we obtain

P�t� = P�0� + JN	
0

t

pm�s�ds . �11�

Hence, to calculate the total population at time t it suffices to
know the most fit sequence population at all intermediate
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times. From Eqs. �10� and �11� one can show that, in the
periodic solution,

P�T + t�
P�t�

= const ¬ A , �12�

where

A = 1 +
JN

P�t�	nT

�n+1�T

pm�t + s�ds . �13�

Hence, in the periodic solution the total and the most fit
sequence populations follow a geometric series, i.e.,

P�t + nT� = AnP�t� , �14�

pm�t + nT� = Anpm�t� . �15�

B. Calculation of the most fit sequence population

We now use the method of Ref. �19� to calculate the most
fit sequence population at time t, pm�t�. We assume that at
time t=0 all the population is situated at the zeroth most fit
sequence S0. The population of the zeroth most fit sequence
at time t
T is simply given by

�S0�e−Ht�S0� , �16�

where H is the ParaMuSe model Hamiltonian �Eq. �6��.
Following Ref. �19�, to calculate a matrix element such as

Eq. �16�, we consider the sum over all possible intermediate
configurations, S0 , . . . ,Si , . . . ,S0, and for each interval we re-
place H either with the “transverse” interaction, Hdiff
=−��i=1

N ��i
x−1�, or the “longitudinal” one, Hint=−�f��i

z�
−N��. In the N→� limit only one of these terms will be
significant. For the matrix element �16� it can be shown that
the dominant contribution comes from the path in which all
intermediate states are S0, in which we consider only the
longitudinal interaction, giving

�S0�e−Ht�S0� = �S0�e−Hintt�S0� = exp�N�J − ��t� . �17�

Hence,

pm�t� = exp�N�J − ��t� for t 
 T . �18�

In general, to find the population of the nth most fit
sequence we need to calculate the matrix element
�Sn�exp�−Ht��S0�, where nT
 t
 �n+1�T. Again, we con-
sider the sum over all intermediate configurations. For a
given path Sn¯Si¯S0, we check whether the most fit se-
quence Sm is or is not an intermediate configuration in the
time interval mT
s
 �m+1�T. If it is not, then we choose
the transverse interaction Hdiff for the period �mT , �m+1�T�.
If it is, then we take the longitudinal interaction Hint for the
period of time the path remains at most fit sequence Sm. We
can discard paths that reach the most fit sequence Sm at time
s0, migrate to another sequence at time s1, only to return to
the most fit sequence Sm at time s2 �where mT�s0
s1
s2
� �m+1�T� since it can be shown that the sum of contribu-
tions from all such paths is much smaller than the contribu-
tion from the path which remains at Sm from time s0 to time

s2. Hence, we need only consider paths which visit each most
fit sequence Sm at most once in the period �mT , �m+1�T�. An
example of such a path is shown in Fig. 1.

We now compute the contribution from a given path. Let
V� �0,1 , . . . ,n� be the subset of most fit sequences visited
by the path. Denote the elements of V by vi such that V
= �v1 , . . . ,vm� and 0=v1
v2
 ¯ 
vm=n. Denote by �vi

the
time spent at most fit sequence Svi

and denote by tvi,vi+1
the

time between leaving most fit sequence Svi
and arriving at

most fit sequence Svi+1
�see Fig. 1�. We have the conditions

0 
 �vi
� T , �19�

�vi+1 − vi − 1�T � tvi,vi+1

 �vi+1 − vi + 1�T , �20�

�
i=1

m

�vi
+ �

i=1

m−1

tvi,vi+1
= t . �21�

In the periods �vi
spent at a most fit sequence we take the

longitudinal interaction, and in the periods tvi,vi+1
we take the

transverse interaction. The contribution from the path is then

�Svm
�exp�− Hint�vm

��Svm
��Svm

�exp�− Hdifftvm−1,vm
��Svm−1

�

��Svm−1
�exp�− Hint�vm−1

��Svm−1
�

��Svm−1
�exp�− Hdifftvm−2,vm−1

��Svm−2
� ¯ �Sv2

�

�exp�− Hint�v2
��Sv2

��Sv2
�exp�− Hdifftv1,v2

��Sv1
�

��Sv1
�exp�− Hint�v1

��Sv1
� . �22�

Reference �19� gives the following expression for a ma-
trix element between two sequences a distance k apart, tak-
ing the transverse interaction Hdiff:

�Sj�exp�− Hdifft��Si� = exp�− N�t + �N − k�ln cosh��t�

+ k ln sinh��t�� . �23�

Equation �22� then becomes

FIG. 1. �Color online� A diagrammatic representation of a path
contributing to the matrix element �S5�exp�−Ht��S0�. The horizontal
sections of the path correspond to periods spent at a most fit se-
quence �for which we take the longitudinal interaction Hint in Eq.
�22��, and the diagonal sections correspond to periods between most
fit sequences �for which we take the transverse interaction Hdiff�.
For this path V= �0,2 ,3 ,5�.
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exp�N�J − ����v1
+ �v2

+ ¯ + �vm
��

��
i=1

m−1

exp�− N�tvi,vi+1
+ �N − dvi,vi+1

�ln cosh��tvi,vi+1
�

+ dvi,vi+1
ln sinh��tvi,vi+1

��

= exp�N�J − ��t��
i=1

m−1

exp�− NJtvi,vi+1
+ �N − dvi,vi+1

�

�ln cosh��tvi,vi+1
� + dvi,vi+1

ln sinh��tvi,vi+1
�� , �24�

where dvi,vi+1
is the distance between Svi

and Svi+1
.

Finally, we approximate the contribution from all paths
with the same set V by taking saddle-point values for the
times tvi,vi+1

. The saddle-point values were found in Ref. �19�
�Eq. �17� of Ref. �19��,

tanh��tvi,vi+1
� =

2dvi,vi+1
/N

J

�
+�� J

�
�2

−
4dvi,vi+1

�N − dvi,vi+1
�

N2

.

�25�

If vi+1=vi+1 �i.e., successive most fit sequences are visited�,
then dvi,vi+1

=k, and

tvi,vi+1
=

k

NJ
+ O�N−2� for vi+1 = vi + 1. �26�

If vi+1vi+1 then it needs to be checked that the saddle-
point time �25� satisfies condition �20�. In fact it can be
shown that for large enough N the saddle-point time is al-
ways less than the minimum time of condition �20�, that is,
�vi+1−vi−1�T tvi,vi+1

. The proof of this fact is given in Ap-
pendix B. In this case instead of taking the saddle-point time
given by Eq. �25�, we take the minimum allowable time,

tvi,vi+1
= �vi+1 − vi − 1�T for vi+1  vi + 1. �27�

Thus, our approximation for the population of the most fit
sequence at time t is given by

pm�t� = exp�N�J − ��t� �
V��0,. . .,n�

��
i=1

m−1

�exp�− NJtvi,vi+1

+ �N − dvi,vi+1
�ln cosh��tvi,vi+1

�

+ dvi,vi+1
ln sinh��tvi,vi+1

���� , �28�

where the times tvi,vi+1
are given by Eqs. �26� and �27�. From

Eq. �28� it follows that, if nT
 t1 , t2
 �n+1�T then,

pm�t2� = pm�t1�eN�J−���t2−t1� �29�

since the sum over V in Eq. �28� is identical for pm�t1� and
pm�t2�.

Let us consider the population of Sn at time t=nT+�, that
is, just after the environmental change. We split the sum over
all paths arriving at Sn at time t into a sum over paths which
visit most fit sequence Sn−1 �n−1�V� and a sum over paths
which do not �n−1�V�.

For the paths which visit most fit sequence Sn−1 we have
tn−1,n= k

NJ , and thus these paths must leave Sn−1 at time �nT
− k

NJ �. Hence,

pm�nT + ��

= �sum over paths at Sn−1 at time �nT −
k

NJ
�


+ �sum over paths not visiting Sn−1�

= �Sn�exp�− Hdiff
k

NJ
��Sn−1��Sn−1�exp�− H�nT −

k

NJ
�


��S0� + �sum over paths not visiting Sn−1�

= �Sn�exp�− Hdiff
k

NJ
��Sn−1�pm�nT −

k

NJ
�

+ �sum over paths not visiting Sn−1� . �30�

In a similar way, we split the sum over paths not visiting Sn−1
into those which visit Sn−2 and those which do not. For those
which do, we have tn−2,n=T, so these paths must remain at
Sn−2 until time �n−1�T. Thus,

pm�nT + �� = �Sn�exp�− Hdiff
k

NJ
��Sn−1�pm�nT −

k

NJ
�

+ �Sn�exp�− HdiffT��Sn−2�pm��n − 1�T − ��

+ �sum over paths not visiting Sn−1 or Sn−2� .

�31�

Continuing this argument, we obtain

pm�nT + �� = �Sn�exp�− Hdiff
k

NJ
��Sn−1�pm�nT −

k

NJ
�

+ �
m=2

n

�Sn�exp�− Hdiff�m − 1�T��Sn−m�pm

���n − m + 1�T − �� . �32�

C. Calculation of A

Using Eq. �32� we now find an expression for the growth
constant A in the periodic solution, in terms of the param-
eters k, T, j, �, and N. First, we show that in the periodic
solution described in Sec. IV A only the first term in Eq. �32�
is significant.

In the periodic solution, from Eqs. �15�, �29�, and �32� we
have,
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e−N�J−��T = A−1e−�J−��k/J�Sn�exp�− Hdiff
k

NJ
��Sn−1�

+ �
m=2

n

A−m�Sn�exp�− Hdiff�m − 1�T��Sn−m� .

�33�

For the first term, using that �
k

NJ �1 we have, from Eq. �23�,

e−�J−��k/J�Sn�exp�− Hdiff
k

NJ

�Sn−1� � exp�− k�ln

NJ

�k
+ 1�
 .

�34�

To calculate the matrix elements for the other terms we need
the distance dn,n−m from the nth most fit sequence to the
�n−m�th most fit sequence. It is shown in Appendix A that,
for m
N1/3, the probability that this distance is exactly mk
tends to 1 as N→�. Using this, we can show that all the
terms in the sum of Eq. �33� with m
N1/3 are negligible for
large enough N, i.e.,

lim
N→�

�
m=2

N1/3

A−m�Sn�exp�− Hdiff�m − 1�T��Sn−m�

exp�− k�ln
NJ

�k
+ 1�
 = 0. �35�

From Eq. �23� we have,

�Sn�exp�− Hdiff�m − 1�T��Sn−m�

� exp�− N�m − 1��T + mk ln��m − 1��T�� , �36�

where we have used the fact that �m−1��T
= �m−1��T ln N /N�1. The right-hand side of Eq. �36� de-
creases as m increases �for m
N�; thus, we can bound each
term in the sum of Eq. �35� by the term with m=2,

�
m=2

N1/3

A−m�Sn�exp�− Hdiff�m − 1�T��Sn−m�


 N1/3�Sn�exp�− HdiffT��Sn−2�

= N1/3 exp�− N�T + 2k ln��T��

= exp�− �2k + �T − 1/3�ln N + 2k ln��T ln N�� .

�37�

Hence,

�
m=2

N1/3

A−m�Sn�exp�− Hdiff�m − 1�T��Sn−m�

exp�− k�ln
NJ

�k
+ 1�




exp�− �2k + �T − 1/3�ln N + 2k ln��T ln N��

exp�− k�ln
NJ

�k
+ 1�


= exp�− �k + �T − 1/3�ln N + 2k ln���jT

k
ln N� + k
 .

�38�

The last line goes to zero as N→�, giving the required re-
sult.

Now we show that the sum of terms with m�N1/3 in Eq.
�33� can also be discarded. Assuming A1 �which will al-
ways be the case for nonzero most fit sequence population�,
we have

�
m=N1/3

n

A−m�Sn�exp�− Hdiff�m − 1�T��Sn−m�

exp�− k�ln
NJ

�k
+ 1�





�
m=N1/3

n

A−m

exp�− k�ln
NJ

�k
+ 1�




A−N1/3

�1 − A−1�exp�− k�ln
Nj

�k
+ 1�


=

exp�k ln� j

�k
� + k


1 − A−1 exp�− N1/3 ln A + k ln N� .

�39�

Again, the last line goes to zero as N→�.
Hence, for large enough N, only the first term in Eq. �33�

is significant, and we have

e−N�J−��T = A−1e−�J−��k/J�Sn�exp�− Hdiff
k

NJ

�Sn−1�

= A−1 exp�− k�ln
NJ

�k
+ 1�
 . �40�

Therefore, we obtain the desired expression for A in terms of
the parameters k, T, j, �, and N,

A = exp��− k + �j − ��T�ln N − k ln
j

�k
− k
 . �41�
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D. Analysis of the periodic solution

From Eq. �41� we can calculate the proportion of popula-
tion at the most fit sequence in the periodic solution as fol-
lows. From Eq. �11� we have,

P�nT� = P��n − 1�T� + JN	
�n−1�T

nT

pm�s�ds . �42�

We can compute the integral using Eq. �29�, leading to

P�nT� = P��n − 1�T� +
J

J − �
pm�nT − �� . �43�

Using Eqs. �15� and �41� we obtain the proportion of popu-
lation at the most fit sequence just before an environmental
change,

pm�nT − ��
P�nT�

= �1 − �/j�1 − exp��k − �j − ��T�ln N + k ln
j

�k
+ k
� .

�44�

The first term is the asymptotic most fit sequence population
in the corresponding static environment �sharp-peak fitness
function with height J and mutation rate ��.

The transition between selection and nonselection of the
quasispecies occurs when the right-hand side of Eq. �44� is
zero, that is,

�k − �j − ��T�ln N + k ln
j

�k
+ k = 0. �45�

Figure 2 gives a diagram showing this transition. For large

enough N we can neglect the last two terms, giving the mu-
tation rate threshold

�max = j −
k

T
. �46�

For mutation rates ��max the quasispecies is not selected.
In terms of the original parameters J and � we have,

�max = J −
k ln N

TN
. �47�

It is interesting to note that in the N→� limit there is no
minimal mutation rate threshold—the quasispecies survives
for any 0
�
�max. However, for finite N we can give an
estimate of the minimum mutation rate threshold by assum-
ing a scaling �=��N−	 ln N �it can be checked that the deri-
vations of Secs. IV B and IV C remain valid with this scal-
ing�. From Eq. �44� the minimum threshold occurs when

�	k − jT�ln N + k ln
j

��k
+ k = 0. �48�

Neglecting the last two terms we obtain

	 =
jT

k
. �49�

So for the minimum mutation rate threshold we have

�min � N1−jT/k. �50�

In terms of the parameter �,

�min � N−jT/k ln N . �51�

We now compute the optimal mutation rate—that is, the mu-
tation rate that optimizes the growth in population over one
period, A. From Eq. �41� the optimum is

�opt =
k

T ln N
. �52�

It is interesting to note that the optimal mutation rate is in-
dependent of the sharp-peak height J. In terms of the param-
eter �,

�opt =
k

NT
. �53�

Figures 3 and 4 show the most fit sequence populations as a
function of mutation rate for a variety of values of the pa-
rameters k, T, j, and N.

Finally, we give an expression for the mean fitness aver-
aged over one period,

�JN
pm�t�
P�t� �T

=
1

T
ln A = �j − ��ln N −

k

T
�ln N + ln

j

�k
+ 1� .

�54�

The first term is the mean fitness of the asymptotic solution
in the corresponding static environment.

FIG. 2. �Color online� A Phase diagram showing the transition
between zero and nonzero average most fit sequence populations
�selection and nonselection of the quasispecies� according to the
parameters k / jT and � /J. The solid boundary is the approximate
result for k=10, N=106. The dashed line is the phase transition in
the N→� limit.
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V. DISCUSSION

In summary we have calculated the asymptotic behavior
of a quasispecies population in a periodically changing envi-
ronment. We have found expressions for the minimal, maxi-
mal, and optimal mutation rates, which are exact in the
large-N limit.

The minimum, maximum, and optimum mutation rates all
involve the parameters k and T in the combination k /T. The
parameter k /T can thus be taken as a measure of the severity
of the dynamic environment—the higher the value of k /T the
more severe the environment. The result for the optimum
mutation rate has a particularly simple interpretation: the op-
timal mutation rate occurs when the average number of mu-
tations per sequence per unit time ��N� is the same as the
average number of spin flips in the most fit sequence per unit
time �k /T�.

In future we would like to extend the results presented in
this paper to more general fitness functions. A recent analysis
of the dynamics of the ParaMuSe and Eigen models for ar-
bitrary symmetric fitness functions �20� may make this trac-
table. We conjecture that the main findings of this paper—
that the dynamic environment can be characterized by a
single parameter k /T �average number of base changes in the
most fit sequence per unit time�, and that the optimal ge-
nomic mutation rate is equal to the environmental severity
��N=k /T�—are independent of the exact shape of the most
fit sequence peak.

One can also consider the same dynamic environment in
the Eigen quasispecies model. The dynamics of the Eigen
model with the sharp-peak fitness function have been solved
exactly in the large-N limit �18�, and an analogous analysis
to the one presented here is possible �27�. In Ref. �8� the
Eigen model was studied with a changing environment,
sharp-peak fitness function, and k=1. One interesting conclu-
sion from that paper is that there exist sets of parameters
�j ,k ,T� for which selection does not occur for any value of
the mutation rate. We have a similar result here—the maxi-
mum and minimum mutation rates meet when k / jT=1, and
so in environments with k / jT1 selection is impossible.

The fitness landscape considered here is an extremely ide-
alized one, and so it is difficult to make direct comparisons
with data from real biological systems. However, one quan-
titative similarity between the optimal mutation rate found
above and mutation rates observed in real organisms is worth
highlighting. Drake et al. �22� found that the genomic muta-
tion rates �number of mutations per genome per replication�
are approximately constant and independent of genome
length within broad groups of real organisms, but differ sig-
nificantly between different groups �the groups studied were
lytic RNA viruses, retroviruses, DNA based microbes, and
higher eukaryotes�. In Ref. �28�, Nilsson and Snoad sug-
gested a theoretical explanation of this result in terms of
adaptation to a changing environment. In this paper we
found that the optimal genomic mutation rate ��N� is inde-
pendent of the genome length N and depends only on the
environmental severity. If we assume that organisms within
one of the groups listed above inhabit environments with
similar severity and that their mutation rates are optimized
for the environment, then it follows that their genomic mu-
tation rates should be similar. Thus, our results provide more
rigorous theoretical support for the hypothesis given in Ref.
�28�.
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APPENDIX A: PROBABILITY OF mk SPIN FLIPS
BEING DISTINCT

In this appendix it is shown that for m�N1/3 the probabil-
ity of mk successive spin flips being distinct goes to 1 as N

FIG. 3. �Color online� A graph of average most fit sequence
population in the periodic solution, against mutation rate. The solid
line shows the result for parameters j=1, T=20, k=15, and N
=104. The maximum, minimum, and optimum mutation rates are
indicated. The dashed line shows the result in the N→� limit—
note that there is no minimum mutation rate threshold in this case.

FIG. 4. �Color online� A graph showing the average most fit
sequence population against mutation rate for a number of different
environmental severities k /T. The fixed parameters are j=1, T
=20, and N=106.
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→�. First we prove the result for k=1. In this case the
probability that the first N	 �	
1� spin flips are distinct is

p1 =
N!

�N − N	� ! N�N	�
. �A1�

For large N we use Stirling’s approximation

N ! = �2�N�N

e
�N

�1 + O�N−1�� �A2�

leading to

p1 =
e−�N	�

�1 − N−1+	�N−N	+1/2
�1 + O�N−	�� . �A3�

We approximate

�1 − N−1+	�N−N	+1/2

= exp��N − N	 + 1/2�ln�1 − N−1+	��

= exp��N − N	 + 1/2��− N−1+	 − N−2+2	/2 + O�N−3+3	���

= exp�− N	 + N−1+2	/2��1 + O�N−1+	� + O�N−2+3	�� .

�A4�

Substituting this into Eq. �A3� gives

p1 = exp�− N−1+2	/2��1 + O�N−	� + O�N−1+	� + O�N−2+3	�� .

�A5�

We see from Eq. �A5� that, for any 	

1
2 , the probability

goes to 1 as N→�.
For k1, we need the probability that kN	 random spin

flips are distinct given that flips 1 , . . . ,k are distinct; flips k
+1, . . . ,2k are distinct; etc. Hence,

pk =
N!

�N − kN	� ! N�kN	�� �N − k� ! Nk

N!

�N	�



N!

�N − kN	� ! N�kN	�

= exp�− N−1+2	k2/2��1 + O�N−	� + O�N−1+	� + O�N−2+3	�� .

�A6�

As above, for 	

1
2 the probability goes to 1 as N→�.

APPENDIX B: SADDLE-POINT TIME FOR vi+1−vi1

In this appendix it is shown that the time t which maxi-
mizes the matrix element �Svi+1

�exp�−Hdifft��Svi
� is always

less than �vi+1−vi−1�T. If the distance between the two se-
quences Svi+1

and Svi
is d, then the saddle-point time is given

by Eq. �25�,

t =
1

�
tanh−1�

2d/N

J

�
+�� J

�
�2

−
4d�N − d�

N2
� . �B1�

From Eq. �B1� it can be shown that

�t

�d
=

1

�N

1

�� J

�
�2

−
4d�N − d�

N2

�
1

N

1

�J2 − �2
. �B2�

Hence the saddle-point time t is an increasing function of d,
and so the maximum saddle-point time occurs when d takes
its maximum value, k�vi+1−vi�. Integrating over d in Eq.
�B2� we obtain

t �
1

N

k�vi+1 − vi�
�J2 − �2

, �B3�

and so

t

�vi+1 − vi − 1�T
�

2

NT

k
�J2 − �2

=
2

T ln N

k
�j2 − �2

.

�B4�

The right-hand side goes to zero as N→�, so for large
enough N we have the required result

t � �vi+1 − vi�T . �B5�
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